MIPE: A metagenome-based community structure explorer and SSU primer evaluation tool
نویسندگان
چکیده
An understanding of microbial community structure is an important issue in the field of molecular ecology. The traditional molecular method involves amplification of small subunit ribosomal RNA (SSU rRNA) genes by polymerase chain reaction (PCR). However, PCR-based amplicon approaches are affected by primer bias and chimeras. With the development of high-throughput sequencing technology, unbiased SSU rRNA gene sequences can be mined from shotgun sequencing-based metagenomic or metatranscriptomic datasets to obtain a reflection of the microbial community structure in specific types of environment and to evaluate SSU primers. However, the use of short reads obtained through next-generation sequencing for primer evaluation has not been well resolved. The software MIPE (MIcrobiota metagenome Primer Explorer) was developed to adapt numerous short reads from metagenomes and metatranscriptomes. Using metagenomic or metatranscriptomic datasets as input, MIPE extracts and aligns rRNA to reveal detailed information on microbial composition and evaluate SSU rRNA primers. A mock dataset, a real Metagenomics Rapid Annotation using Subsystem Technology (MG-RAST) test dataset, two PrimerProspector test datasets and a real metatranscriptomic dataset were used to validate MIPE. The software calls Mothur (v1.33.3) and the SILVA database (v119) for the alignment and classification of rRNA genes from a metagenome or metatranscriptome. MIPE can effectively extract shotgun rRNA reads from a metagenome or metatranscriptome and is capable of classifying these sequences and exhibiting sensitivity to different SSU rRNA PCR primers. Therefore, MIPE can be used to guide primer design for specific environmental samples.
منابع مشابه
Microbial Community Analysis with Ribosomal Gene Fragments from Shotgun Metagenomes.
Shotgun metagenomic sequencing does not depend on gene-targeted primers or PCR amplification; thus, it is not affected by primer bias or chimeras. However, searching rRNA genes from large shotgun Illumina data sets is computationally expensive, and no approach exists for unsupervised community analysis of small-subunit (SSU) rRNA gene fragments retrieved from shotgun data. We present a pipeline...
متن کاملEvaluation of 16S rRNA Gene Primer Pairs for Monitoring Microbial Community Structures Showed High Reproducibility within and Low Comparability between Datasets Generated with Multiple Archaeal and Bacterial Primer Pairs
The application of next-generation sequencing technology in microbial community analysis increased our knowledge and understanding of the complexity and diversity of a variety of ecosystems. In contrast to Bacteria, the archaeal domain was often not particularly addressed in the analysis of microbial communities. Consequently, established primers specifically amplifying the archaeal 16S ribosom...
متن کاملMolecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase
Rice field soil with a nonsaturated water content induced CH4 consumption activity when it was supplemented with 5% CH4. After a lag phase of 3 days, CH4 was consumed rapidly until the concentration was less than 1.8 parts per million by volume (ppmv). However, the soil was not able to maintain the oxidation activity at near-atmospheric CH4 mixing ratios (i.e., 5 ppmv). The soil microbial commu...
متن کاملQuantitative metagenomic analyses based on average genome size normalization.
Over the past quarter-century, microbiologists have used DNA sequence information to aid in the characterization of microbial communities. During the last decade, this has expanded from single genes to microbial community genomics, or metagenomics, in which the gene content of an environment can provide not just a census of the community members but direct information on metabolic capabilities ...
متن کاملUnderstanding microbial community diversity metrics derived from metagenomes: performance evaluation using simulated data sets.
Metagenomics holds the promise of greatly advancing the study of diversity in natural communities, but novel theoretical and methodological approaches must first be developed and adjusted for these data sets. We evaluated widely used macroecological metrics of taxonomic diversity on a simulated set of metagenomic samples, using phylogenetically meaningful protein-coding genes as ecological prox...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017